Positron Emission Tomography and Positron Emission Tomography/Computerized Tomography of Urological Malignancies: An Update Review

Kirsten Bouchelouche* and Peter Oehr

From the Positron Emission Tomography and Cyclotron Unit, Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark, and Department of Nuclear Medicine, University of Bonn (PO), Bonn, Germany

Purpose: Appropriate imaging in uro-oncology is a crucial component at primary diagnosis, followup and recurrence to achieve an accurate assessment of the disease and determine the most effective treatment. We summarize recent developments in positron emission tomography and positron emission tomography/computerized tomography for prostate, bladder and renal cancer.

Materials and Methods: The recent published literature on positron emission tomography and positron emission tomography/computerized tomography in uro-oncology was searched and reviewed.

Results: For prostate cancer ¹⁸F-fluorodeoxyglucose is not highly effective for primary diagnosis but it has a limited role in staging and recurrence detection. Promising results have been shown by ¹¹C-choline, ¹⁸F-fluorocholine, ¹¹C-acetate and ¹⁸F-fluoride. The role of ¹¹C-methionine, ¹⁸F-fluoro-5-alpha-dihydrotestosterone and anti-1-amino-3-¹⁸F-fluorocyclobutane-1-carboxylic acid remains to be elucidated. For bladder cancer ¹⁸F-fluorodeoxyglucose positron emission tomography is useful for identifying distant metastases but not for detecting primary tumors due to the urinary excretion of ¹⁸F-fluorodeoxyglucose. The role of ¹¹C-choline and ¹¹C-methionine remains to be evaluated further in clinical studies. For renal cancer ¹⁸F-fluorodeoxyglucose is of limited use for primary diagnosis but it has a role in staging and restaging of the disease. More clinical data are needed to investigate the roles of ¹⁸F-fluoromisonidazole and ¹⁸F-fluorothymidine.

Conclusions: Several advances in positron emission tomography and positron emission tomography/computerized tomography for urological cancer have been made in recent years. However, larger clinical trials are needed to establish the role of this imaging method for urological malignancy. In the near future the new radiotracers and further advancement in this imaging technique are expected to improve the performance of positron emission tomography/computerized tomography in uro-oncology.

Key Words: prostate; urinary tract; carcinoma, transitional cell; carcinoma, renal cell; positron-emission tomography

I n recent years PET has undergone explosive growth and demonstrated great potential for imaging many primary and metastatic cancers. In urology PET has been one of the slowest areas to develop. This is mainly due to the urinary excretion of many PET tracers and variable tracer uptake in some urological tumors. However, PET and PET/CT in urology have expanded during these years because PET/CT scanners have been improved technically and more favorable PET tracers have been developed.

PET is a unique molecular imaging modality that provides images of physiological and metabolic processes. PET uses positron emitters (positron emitting radionuclides) to provide quantitative tomographic images. Positron emitting radionuclides are produced in a cyclotron optimized for routine clinical use. Biomolecules are labeled with positron emitting radionuclides and the final radiopharmaceuticals are applied to humans after appropriate quality control. All positron emitters have a relatively short half-life, ie 110 minutes for ¹⁸F, 20 minutes for ¹¹C, 10 minutes for ¹³N, 122

seconds for ¹⁵O and 75 seconds for ⁸²Rb. In the PET scanner gamma photons are recorded and tomographic images of tracer distribution in the body are reconstructed using mathematical algorithms. PET images are a volumetric set of data that can be displayed as tomographic images in the transaxial, coronal or sagittal planes.

A limitation of PET is the lack of an anatomical reference frame. CT is an excellent morphological imaging modality with anatomical resolution. The combined PET/CT device offers optimal fusion of images, which allows the localization of functional findings detected by PET in morphological structures as shown by CT during 1 imaging procedure.

Most malignant tumors are characterized by enhanced glucose use. Increased cellular proliferation in tumors results in increased FDG use, which can be imaged using PET and ¹⁸F-FDG. In urology ¹⁸F-FDG PET is a challenge, mainly because of urinary excretion and variable uptake in some urological cancers. Thus, new PET tracers have been investigated in urological malignancies in recent years. These tracers differ in nucleotide labeling, and biochemical uptake mechanisms and pathways, which are characteristics influencing their clinical applicability. The metabolic PET tracer that is most frequently used in oncology scans is ¹⁸F-FDG. Regional FDG uptake depends on the cellular

Submitted for publication March 2, 2007.

^{*} Correspondence: Positron Emission Tomography and Cyclotron Unit, Department of Nuclear Medicine, Odense University Hospital, DK-5000 Odense, Denmark (telephone: +45 4011 9660; FAX: +45 6590 6192; e-mail: bouchelouche@mail.tele.dk).

glucose metabolism. ¹⁸F-FDG uptake in the cell is related to several glucose transporters that allow ¹⁸F-FDG passage across the cell membrane to the cytoplasm.¹ The radiotracer is first trapped in the cell by rapid phosphorylation without further metabolization but it is later released again after delayed dephosphorylation, followed by clearance via the urogenital system.

Choline is incorporated into the cell membrane.¹ Because cancer cells duplicate rapidly, the biosynthesis of cell membranes is also rapid and it is associated with increased choline uptake. These observations have led to the use of ¹¹C-choline PET for imaging malignancies. ¹¹C has a short half-life of only 20 minutes, which causes logistic problems when a cyclotron is not available on site. Due to the longer half-life of ¹⁸F labeled choline (110 minutes) this tracer has been introduced for PET. The major advantage of ¹⁸F-FCH vs ¹¹C-choline is the substantially longer half-life, which allows the distribution of this tracer to PET centers without a cyclotron on site, much like the common distribution of ¹⁸F-FDG. Because urinary tracer excretion is low, these markers are advantageous in urological malignancies.

Cellular uptake of ¹¹C-acetate in tumor cells is proportional to lipid synthesis and it is incorporated into the cellular lipid pool.¹ An increase in fatty acid synthesis and over expression of the key enzyme fatty acid synthase have been demonstrated in prostate cancer.¹ There seems to be no urinary excretion of ¹¹C-acetate. Other biochemical pathways in cancer cells used for tumor imaging in urology refer to amino acid transport and to some extent protein synthesis, eg ¹¹C-methionine and anti-¹⁸F-FACBC, a tumor avid amino acid that is a synthetic l-leucine analogue. To detect accelerated cell division ¹⁸F-FLT is a radiotracer that is currently under investigation. Other tumor biology related radiotracer approaches are androgen receptor binding by ¹⁸F-FDHT, hypoxic imaging agents such as ¹⁸F-FMISO and scanning with ¹⁸F-fluoride, which localize in regions with malignant bone lesions and increased bone turnover.¹ We highlight recent findings with regard to the most common urological malignancies, ie prostate, bladder and renal cancer.

PROSTATE CANCER

In the United States prostate cancer is the most common cancer in men.² Increased awareness of this cancer as a major cause of male cancer mortality has resulted in a challenge for imaging. It is important at primary diagnosis, followup and recurrence to achieve an accurate assessment of disease stage to determine the most effective treatment strategy. Traditional, morphologically based prostate imaging is now being complemented by functional and molecular imaging techniques for prostate cancer. The initial use of ¹⁸F-FDG PET in prostate cancer imaging was disappointing. However, new and more favorable PET tracers have already shown promising results, while other tracers are currently being evaluated.

Local Prostatic Disease

FDG. There is general agreement that ¹⁸F-FDG PET does not have an important role in the primary diagnosis or staging of prostate cancer.¹ This is mainly due to low metabolic glucose activity and urinary excretion of ¹⁸F-FDG, which may mask pathological uptake in the prostate. Liu et al found only 4% sensitivity for detecting primary prostate cancer with ¹⁸F-FDG PET.³ In that study no continuous bladder irrigation was used, which may explain the low sensitivity reported. Using continuous bladder irrigation Oyama et al found 80% sensitivity for detecting primary cancer in a small study of 10 patients.⁴ This higher sensitivity for ¹⁸F-FDG PET may also have been caused by relatively advanced stage and high serum PSA in the patients studied.⁴ Figure 1 shows an example of ¹⁸F-FDG PET/CT.

Choline. In past years studies using radiolabeled choline (labeled to ¹¹C or ¹⁸F) have shown promising results in prostate cancer. Several studies indicated that ¹¹C-choline PET may detect and locate major areas with carcinoma and differentiate segments with cancer from those with benign lesions or normal prostate tissue. Reske et al reported 81% sensitivity and 87% specificity for detecting malignancy in the prostate in 26 patients with prostate cancer.⁵ Another study by Scher et al using ¹¹C-choline PET in 48 patients with clinical suspicion of prostate cancer found 86.5% sensitivity and 61.9% specificity.⁶ A total of 21 patients had no signs of malignancy and in 8 of these 21 PET was falsepositive. Acute prostatitis, chronic prostatitis and BPH were present in these patients. Thus, false-positive findings may occur due to an overlap of ¹¹C-choline uptake between benign and malign processes.

Farsad et al evaluated ¹¹C-choline PET/CT to identify cancer foci in the prostate.⁷ Sensitivity, specificity, accuracy, PPV and NPV were reported to be 66%, 81%, 71%, 87% and 55%, respectively. Martorana et al found 83% sensitivity for the localization of cancer nodules 5 mm or greater.8 However, to assess extraprostatic extension the sensitivity of PET was low in comparison with that of MRI (22% vs 63%, p <0.001). In a study by de Jong et al ¹¹C-choline was found to be avidly taken up in prostate cancer, including the primary tumor and lymph node metastases.⁹ In a study of 20 patients with prostate cancer Yamaguchi et al reported that ¹¹C-choline PET showed 100% diagnostic sensitivity for primary lesions, while the sensitivity of MRI and MRS was 60% and 65%, respectively.¹⁰ A small study by Yoshida et al showed no reliable differential ¹¹C-choline uptake of BPH and prostate cancer.¹¹

Recently studies using ¹⁸F-FCH for prostate cancer imaging were reported. In the study by Schmid et al 10 patients with newly diagnosed prostate cancer and 9 suspected of having recurrence were evaluated with ¹⁸F-FCH PET.¹² The study showed that differentiating malignant areas from BPH was not possible with ¹⁸F-FCH PET. Conflicting results were reported by Kwee et al, who observed that the distribution of tumors in the prostate gland could be visualized with ¹⁸F-FCH PET.¹³ Prostate sextant positive for malignancy on biopsy demonstrated significantly higher maximal SUV than biopsy negative sextants. Another study by Kwee et al showed that delayed or dual phase ¹⁸F-FCH PET may improve the imaging of malignant areas of the prostate.¹⁴ Dual phase ¹⁸F-FCH PET was also used in a study by Cimitan et al.¹⁵

Acetate. Oyama et al reported marked ¹¹C-acetate uptake in prostate cancer lesions in 22 patients and found that ¹¹C-acetate PET was more sensitive for detecting prostate cancer than ¹⁸F-FDG PET.¹⁶ Kato et al investigated the accumulation of ¹¹C-acetate in 30 subjects without prostate cancer, including 21 with a normal prostate and 9

FIG. 1. Staging in 56-year-old man with prostate cancer and serum PSA 61 ng/ml. No metastases were found on conventional bone scintigraphy. CT showed enlarged abdominal lymph nodes. Biopsies from abdominal lymph nodes failed and patient was referred for PET/CT. Transaxial PET (A), CT (B) and PET/CT fusion images (C) show pathological tracer accumulation in prostate. Increased ¹⁸F-FDG uptake is visible in enlarged abdominal lymph node on fusion image (D). In this case ¹⁸F-FDG PET revealed tracer uptake in prostate and abdominal lymph node but increased ¹⁸F-FDG uptake is relatively rare in prostate cancer.

with BPH, and in 6 patients with prostate cancer.¹⁷ All patients with prostate cancer had positive findings on ¹¹C-acetate PET. However, the difference in SUV between patients 50 years or older with a normal prostate or BPH and patients with prostate cancer was not statistically significant. The group recommended careful interpretation of ¹¹C-acetate PET images because the SUV may overlap for prostate cancer, a normal prostate and BPH.

Anti-FACBC. The synthetic L-leucine analogue anti-¹⁸F-FACBC showed excellent in vitro uptake in prostate cancer cell lines and in implanted prostate tumors in nude rats.¹⁸ Recently Schuster et al used anti-¹⁸F-FACBC PET in a small pilot study of 15 patients with newly diagnosed (9) and recurrent (6) prostate carcinoma.¹⁸ Anti-¹⁸F-FACBC PET correctly identified the presence or absence of focal neoplastic involvement in 40 of 48 prostate sextants. In all 4 patients in whom there was proven recurrence anti-¹⁸F-FACBC PET was successful for identifying disease in the prostate bed in 1 and at extraprostatic sites in 3.

Lymph Node Involvement

Choline and acetate. The use of ¹⁸F-FDG PET for primary staging of prostate cancer has been limited from the begin-

ning. Proper staging of prostate cancer is particularly important in high risk primary disease and it has important implications for optimal treatment. Studies of ¹¹C-choline have shown promising results for detecting lymph node metastasis in prostate cancer. In a study by de Jong et al 67 consecutive patients with prostate cancer were included.¹⁹ The results of ¹¹C-choline PET were compared with histological findings of the pelvic lymph node and with followup data. The study showed 80% sensitivity for ¹¹C-choline PET, 96% specificity and 93% accuracy. A study by Oyama et al indicated that ¹¹C-acetate PET was more effective for detecting nodal and bone metastasis than ¹⁸F-FDG PET.¹⁶

Schmid et al reported that ¹⁸F-FCH PET also may be promising for detecting local recurrence and lymph node metastases.¹² Similar results were reported by Cimitan et al.¹⁵ The study showed that ¹⁸F-FCH PET was useful for detecting lymph node involvement. In contrast, Hacker et al recently reported that ¹⁸F-FCH PET was not useful for preoperatively detecting regional lymph node metastases in their study.²⁰ Fricke et al compared ¹¹C-acetate PET with ¹⁸F-FDG PET for detecting lymph node involvement and found that ¹¹C-acetate PET was more useful for detecting regional lymph node metastases than ¹⁸F-FDG PET.²¹

Bone Metastases

FDG. The most common organ for distant metastasis in prostate cancer is bone. ¹⁸F-FDG PET is variable in the detection of bone metastasis and it was reported to be less sensitive for detecting bone metastasis than conventional imaging.²² Nunez et al reported 48% sensitivity for detecting bone metastasis.²² Morris et al examined a total of 157 bone lesions in 17 patients with progressive metastatic prostate cancer.²³ In patients with progressive metastatic prostate cancer ¹⁸F-FDG PET discriminated active osseous disease from quiescent lesions on scintigraphy but it was limited for detecting soft tissue metastases. All lesions seen on ¹⁸F-FDG PET proved to be active disease on subsequent bone scans. Oyama et al reported a decrease in ¹⁸F-FDG uptake in prostate cancer and metastatic lesions after endocrine therapy, suggesting that glucose use by tumors was suppressed by androgen ablation.⁴

Choline, acetate and methionine. Cimitan et al reported that ¹⁸F-FCH PET was useful for detecting bone metastases.¹⁵ Fricke et al compared ¹¹C-acetate PET with ¹⁸F-FDG PET for detecting bone involvement.²¹ The lesion sensitivity of ¹¹C-acetate PET and ¹⁸F-FDG was 83% and 75%, respectively. Kotzerke et al used ¹¹C-acetate and ¹¹C-choline to detect bone metastases in their preliminary study.²⁴ Uptake of the 2 radiotracers in prostate cancer or its metastases was almost identical in 12 patients. Nunez et al found that ¹¹C-methionine was more effective than ¹⁸F-FDG PET for detecting bone metastasis in patients with prostate cancer.²² They combined ¹⁸F-FDG and ¹¹C-methionine PET in 12 patients with newly progressive metastatic cancer and compared the scans with conventional imaging. The sensitivity of ¹⁸F-FDG PET and ¹¹C-methionine PET was 48% (167 of 348 lesions) and 72.1% (251 of 348), respectively, with conventional imaging used as the 100% referent. In this study a significant portion of lesions (26%) had no detectable metabolism of ¹⁸F-FDG or ¹¹C-methionine.

FDHT. A new imaging agent that binds to androgen receptors,¹⁸F-FDHT, was recently developed. This new radiotracer may be used for monitoring the treatment response. Two groups have reported that ¹⁸F-FDHT PET can detect metastatic and recurrent prostate cancer. In 7 patients with a median PSA of 69 ng/ml Larson et al found that ¹⁸F-FDHT detected 78% of the lesions that were identified by conventional imaging, while ¹⁸F-FDG detected 97%.²⁵ Dehdashti et al investigated the feasibility of androgen receptor imaging with ¹⁸F-FDHT PET in patients with advanced prostate cancer and a mean PSA of 86.9 ng/ml.²⁶ This study showed 63% sensitivity on a patient by patient basis (12 of 19) and 86% sensitivity on a lesion by lesion basis (24 of 28). However, in these 2 studies the androgen receptor content of prostate cancer tumors was not investigated. Further studies are needed to evaluate whether ¹⁸F-FDHT PET is predictive of the response to hormonal therapy in patients with prostate cancer.

Fluoride. In a prospective study Even-Sapir et al performed bone scintigraphy, SPECT and ¹⁸F-fluoride PET/CT on the same day in 44 patients with high risk prostate cancer.²⁷ The sensitivity, specificity, PPV and NPV of planar bone scintigraphy were 70%, 57%, 64% and 55%, respectively. For multiple field of view SPECT the values were 92%, 82%, 86% and 90%, respectively. For ¹⁸F-fluoride PET the values were 100%, 62% 74% and 100%, respectively. For ¹⁸F-fluoride PET/CT the values were 100% for all parameters.

Recurrence

FDG. Patients showing increasing PSA after definitive local therapy for prostate cancer represent a diagnostic dilemma. PET with ¹⁸F-FDG may identify local recurrence and distant metastases, and the probability of a positive image increases with increasing PSA.²⁸ Chang et al evaluated whether ¹⁸F-FDG could detect pelvic lymph node metastases in patients with prostate cancer who had increased PSA after initial treatment.²⁹ The study showed 75% sensitivity, 100% specificity and 83.3% accuracy. However, the sensitivity of recurrent disease detection is higher with ¹¹C-acetate than with ¹⁸F-FDG.^{21,30}

Choline. In a study by de Jong et al ¹¹C-choline was used to evaluate treatment in 36 patients with prostate cancer after initial treatment with radical prostatectomy (20) or external beam radiotherapy (16).³¹ Results were compared with the results of histology or followup. The site of recurrence was detected correctly in 78% of patients after external beam radiotherapy compared to 38% after radical prostatectomy. No positive scans were observed in patients with PSA less than 5 ng/ml. Using ¹⁸F-FCH PET Schmid et al reported promising results for detecting local recurrence and lymph node metastases.¹² Heinisch et al found that, when restaging cases of prostate cancer, ¹⁸F-FCH PET yielded positive findings even at PSA less than 5 ng/ml.³² Recently Cimitan et al performed a large study of 100 patients with prostate cancer with a persistent increase in PSA after radical prostatectomy (58), radiotherapy (21) or hormonal therapy (21).¹⁵ They reported that ¹⁸F-FCH PET is not likely to have a significant impact on the therapeutic management of prostate cancer with biochemical recurrence until PSA increases to above 4 ng/ml, especially in patients with well/moderately differentiated primary tumors (Gleason score 7 or less). Figure 2 shows an example of recurrence detection by ¹⁸F-FCH PET/CT.

Acetate. ¹¹C-acetate PET has also shown promising results for the early detection of prostate cancer recurrence in patients with increasing PSA after initial radiotherapy or radical surgery.^{21,30,33–35} In the study by Sandblom et al pathological uptake was seen in patients with PSA as low as 0.5 ng/ml after radical prostatectomy.³⁵ However, in this study false-positive uptake was seen in 3 patients. Oyama et al investigated the effectiveness of PET with ¹¹C-acetate for evaluating patients with increasing PSA after radical prostatectomy or radiation therapy.³⁰ The study demonstrated marked uptake in prostate cancer. ¹¹C-acetate PET had higher sensitivity than ¹⁸F-FDG PET for detecting recurrent prostate cancer. In this study ¹¹C-acetate PET was not able to detect recurrent tumors below PSA 3.0 ng/ml. In the study by Fricke et al ¹¹C-acetate was more useful than ¹⁸F-FDG for detecting local recurrence and regional lymph node metastases.²¹ However, in the same study ¹⁸F-FDG appeared to be more accurate for visualizing distant metastasis.

To assess the clinical value of CT and MRI image fusion with ¹¹C-acetate PET for the detection and exact localization of clinically occult recurrence Wachter et al investigated

FIG. 2. Prostate cancer recurrence in 56-year-old man with history prostatectomy and later radiation therapy because of increasing PSA. Transaxial PET (A), CT (B) and fusion PET/CT images (C) reveal focal ¹⁸F-FCH uptake in prostate bed and enlarged lymph node in right inguinal area.

50 patients with increased/increasing PSA after radical therapy.³⁴ Image fusion changed the characterization of equivocal lesions as normal at 5 of 51 sites (10%) and abnormal at 9 (18%). It precisely defined the anatomical location of abnormal uptake at 37 of 51 sites (73%). ¹¹C-acetate PET findings influenced treatment in 14 of 50 patients (28%). The investigators concluded that retrospective fusion of ¹¹C-acetate and CT/MRI is feasible.

Summary

Regarding prostate cancer, metabolic ¹⁸F-FDG has little accuracy for diagnosing or staging this malignancy. However, increased lipid metabolism and biosynthesis of cell membranes, and their association with increased uptake of acetate or choline radiotracers was shown to be an alternative approach. Most evidence comes from studies of choline. ¹¹C-choline and ¹⁸F-FCH have been successfully applied to prostate cancer for staging primary and recurrent disease. In addition, ¹⁸F-fluoride has shown promising results as a marker of bone metabolism due to metastases. ¹¹C-methionine, ¹⁸F-FDHT and anti-¹⁸F-FACBC remain to be elucidated further. Table 1 lists current PET tracer studies in prostate cancer, including diagnostic results for select clinical purposes.

BLADDER CANCER

Bladder cancer is the fourth most commonly diagnosed cancer in the United States.² The detection of bladder cancer is still based on direct visualization by cystoscopy and subsequent biopsy/resection. Urinary markers still cannot replace cystoscopy for diagnosing bladder cancer. Invasive disease confined to the pelvis is treated with radical cystectomy and pelvic lymphadenectomy. Given the importance of neoadjuvant chemotherapy, preoperative identification of patients at high risk with extravesical spread would help identify candidates for combined modality treatment.

CT and MRI are widely used for preoperatively staging bladder cancer. However, these imaging modalities have limitations. Metastases of bladder cancer frequently replace normal nodes, causing little if any enlargement, and falsenegative rates may be recorded on CT and MRI. Thus, there is a need for a noninvasive imaging modality for more accurately staging bladder cancer.

Local Disease and Staging

FDG. The role of ¹⁸F-FDG PET for detecting localized bladder cancer is limited due to urinary excretion of ¹⁸F-FDG.¹

However, occasionally ¹⁸F-FDG PET/CT may detect unknown primary bladder cancer (fig. 3). On the other hand, ¹⁸F-FDG PET may have a role in identifying locoregional lymph node metastasis and other distant metastasis. Figure 4 shows an example of preoperative staging and figure 5 shows an example of recurrence detection.

Drieskens et al evaluated the preoperative use of ¹⁸F-FDG PET for detecting lymph node metastasis and distant metastasis in 55 patients with bladder cancer.³⁶ For the diagnosis of metastatic disease the sensitivity, specificity and accuracy of ¹⁸F-FDG PET were 60%, 88% and 78%, respectively. Liu et al investigated the value of ¹⁸F-FDG PET for detecting metastatic disease in 46 patients.³⁷ The investigators reported 76.9% sensitivity in 36 patients who received no prior systematic chemotherapy. However, in 10 patients who were imaged after receiving chemotherapy sensitivity decreased to 50%. The group recommended that ¹⁸F-FDG PET should be interpreted with caution in patients who have received prior chemotherapy.

Methionine and choline. Some investigators have attempted to improve the sensitivity of PET for detecting primary tumors in the bladder by using tracers other than FDG. ¹¹C-methionine PET has been reported to be superior to ¹⁸F-FDG PET.¹ Another relevant tracer is ¹¹C-choline since a small amount of tracer is found in urine. de Jong et al used ¹¹C-choline PET in 18 patients to evaluate bladder cancer.³⁸ In the normal bladder wall tracer uptake was low and in 10 patients tumor was detected correctly by ¹¹Ccholine PET. Gofrit et al evaluated ¹¹C-choline PET for preoperative staging in 18 patients.³⁹ They noted that ¹¹Ccholine PET was highly positive for primary and metastatic bladder cancer, and in all primary transitional cell carcinomas ¹¹C-choline uptake was found. The study included 3 patients with refractory bladder carcinoma in situ, which was visualized in all 3. In 6 patients ¹¹C-choline uptake in a lymph node as small as 5 mm was visualized. Picchio et al reported that ¹¹C-choline PET was comparable to CT for detecting residual cancer after transurethral bladder cancer resection but it appeared to be superior for detecting lymph node metastasis.⁴⁰

Summary

¹⁸F-FDG PET is useful for identifying distant metastases but not the primary tumor because of urinary excretion of FDG. Generally increased FDG uptake in these tumors allows the assessment of metastatic disease. However, only a limited number of studies have been published and many

				%	%	%	%	
References	PET Tracer	No. Pts	Purpose	Sensitivity	Specificity	PPV	NPV	Comments
Liu et al ³	¹⁸ F-FDG	24	Diagnosis	4	_	_	_	PET, compared to prostate histology, furosemide washout, no continuous bladder irrigation, PET failed to show p prostate Ca imaging
Oyama et al ⁴	¹⁸ F-FDG	10	Treatment evaluation	80	—	_	_	PET before + after initiation of endocrin therapy, retention of ¹⁸ F-FDG in bladd- minimized by continuous bladder irrigation
de Jong et al ⁹	¹¹ C-choline	30	Staging	100	_	_	_	PET before surgery, additional CT or M histology, prostate Ca in 25 pts + BPH 5, moderate uptake in all BPH
Kato et al ¹⁷	¹¹ C-acetate	30	Diagnosis	_	_	_	_	PET, compared to CT or MRI, normal prostate in 21 pts, BPH in 9, prostate (in 6, normal prostate showed age relat accumulation of ¹¹ C-acetate uptake, SU in normal prostate or BPH overlapped that of prostate Ca in pts 50 yrs or olde
Morris et al ²³ Nunez et al ²²	¹⁸ F-FDG ¹¹ C-methionine (¹⁸ F-FDG)	$\begin{array}{c} 17\\12 \ (12) \end{array}$	Staging Staging	72.1 (48)		_	_	PET, compared to bone scan, CT or MRI PET, 2 tracers in all 12 pts, compared to bone scan, CT or MRI, Lesion based sensitivity reported
Oyama et al ¹⁶	¹¹ C-acetate (¹⁸ F-FDG)	22 (18)	Staging	100 (83)	_	_	_	PET, compared to CT or MRI, 2 tracers 18/22 pts, problematic was SUV based sensitivity comparison of different pt N + without indication of respective specificities.
de Jong et al ¹⁹	¹¹ C-choline	67	Staging	80	96	—	—	PET, additional CT or MRI, compared to lymph node histology, 93% accuracy
de Jong et al ³¹	¹¹ C-choline	36	Treatment evaluation	38/78	_	_	_	PET, PSA greater than 0.2 ng/ml additional CT or CT + bone scan, 2 groups of radical prostatectomy in 20 p + external beam radiotherapy in 16
Chang et al ²⁹	¹⁸ F-FDG	24	Staging	75	100	100	67.7	PET, compared to lymph node histology additional CT, retrospective study, 83.3 accuracy
Fricke et al ²¹	¹¹ C-acetate (¹⁸ F-FDG)	24 (15)	Restaging	83 (75)	_	_	_	PET, 2 tracers in 15/24 pts, compared to histology, MRI, CT +/or TRUS, lesion based evaluation
Kotzerke et al ²⁴	¹¹ C-acetate, (¹¹ C-choline)	12 (12)	Staging					PET, 2 tracers had almost identical resu
Oyama et al ³⁰	¹¹ C-acetate (¹⁸ F-FDG)	46	Restaging	_	_	_	_	PET, bone scan or conventional CT when available, biopsies only in 3 pts, 2 grout of prostatectomy in 30 pts + radiation therapy in 16, 59% sensitivity at PSA greater than 3 ng/ml
Larson et al ²⁵	¹⁸ F-FDHT (¹⁸ F-FDG)	7 (7)	Staging	78 (97)	—	—	—	PET, compared to conventional imaging advanced prostate Ca with median PS/ 69 ng/ml, lesion based evaluation
Dehdashti et al ²⁶	¹⁸ F-FDHT	20	Staging	63	—	_	_	PET, compared to conventional imaging advanced prostate Ca with mean PSA 86.9 ng/ml, 86% sensitivity on lesion by lesion basis (24/28)
Farsad et al ⁷	¹¹ C-choline	41	Diagnosis	66	81	87	55	PET/CT, 216 sextant biopsies, lesion bas sensitivity reported, 71% accuracy, prostate Ca in 36 pts, 5 controls had bladder cancer, ¹¹ C-choline not recommended for first line screening fo prostate Ca in men at high risk
Kwee et al ¹³	¹⁸ F-FCH	17	Diagnosis/ staging	93	48	_	_	PET, correlated with histology, CT, plair x-ray + bone scan, tracer uptake in prostate sextants, max SUV greater th 3.3 based evaluation
Schmid et al ¹²	¹⁸ F-FCH	19	Staging/ restaging	100 Restaging	_	—	—	PET/CT, newly diagnosed prostate Ca in 10 pts, recurrent disease in 9, compare to histology + initial staging, tumor detection also possible at PSA 5 ng/ml less
Schoder et al ²⁸	¹⁸ F-FDG	91	Restaging	31	—	_	_	PET, Compared to bone scan, CT+MRI when available, retrospective study, PS relapse after radical prostatectomy, pts relative low risk + mean PSA 4.6 ng/m
Yamaguchi et al ¹⁰	¹¹ C-choline	20	Diagnosis	100	—	—	—	PET, compared with MRI/MRS, sensitiv
Yoshida et al ¹¹	¹¹ C-choline	13	Staging/ restaging	56.3	12.5	_	_	60% for MRI + 65% for MRS PET, compared to CT + bone scan, primary staging in 6 pts, radical prostatectomy in 5, radiotherapy in 3, small pt No. for sensitivity + specificit

				TABLE	1. Continued	ļ		
References	PET Tracer	No. Pts	Purpose	% Sensitivity	% Specificity	% PPV	% NPV	Comments
Albrecht et al ³³	¹¹ C-acetate	32	Restaging	82 Local recurrence	_	_	_	PET, image fusion with CT, endorectal MRI, compared to unknown, radiotherapy in 17 pts + radical prostatectomy in 15, PET 1 hr after injection allowed better differentiation between benign + malignant tumors than early imaging
Cimitan et al ¹⁵	¹⁸ F-FCH	100	Staging	98	100%	Unknown	Unknown	PET/CT, early + delayed scans in 43 pts, radical prostatectomy in 58, radiotherapy in 21 + hormonal therapy in 21, mean PSA 48.28 ng/ ml pos PET/CT group, 1.98 ng/ml in PET/CT neg group
Even-Sapir et al ²⁷	¹⁸ F-Fluoride	44	Staging	100	100	100	100	PET/CT, compared to planar + SPECT bone scan, + PET alone, high risk of bone metastases (Gleason score 8 or greater, PSA 20 ng/ml or greater), planar bone scan: 69% sensitivity, 64% specificity, 69% PPV, 64% NPV
Hacker et al^{20}	¹⁸ F-FCH	20	Staging	10	80%	—	—	PET/CT before intraop sentinel +
Heinisch et al 32	¹⁸ F-FCH	34	Restaging	—	—	—	—	extended lymph node dissection PET/CT, compared to CT, MRI + histology, radical prostatectomy in 31 pts + radiotherapy in 3
Kwee et al ¹⁴	¹⁸ F-FCH	26	Diagnosis/ staging	60 Initial, 88 delayed	90 (both)	_	_	Dual phase PET, sextant analysis, compared to histology, newly diagnosed in 15 pts, recurrence in 2, no recurrence sign in 6 + normal
Martorana et al ⁸	¹¹ C-choline	43	Diagnosis	66	84	_	_	prostate in 3, small pt No. PET/CT before biopsy, sextant analysis. TRUS sensitivity 61% + specificity 97%, extraprostatic extension sensitivity PET/CT 22% + MRI 63%
Reske et al 5	¹¹ C-choline	26	Diagnosis	81	87	86	83	PET/CT, sextant analysis, compared
Sandblom et al^{35}	¹¹ C-acetate	20	Restaging	_	_	_	_	to histology, 84% accuracy PET/CT, compared to histology when available, pos PET at low PSA
Scher et al ⁶	¹¹ C-choline	58	Diagnosis/ staging	86.5 (81.1)	61.9	—	_	PET in 25 pts + PET/CT in 33, compared to histology, sensitivity for primary Ca 86.5% + for metastasis 81.1%
Wachter et al 34	¹¹ C-acetate	50	Restaging	_	_	_	_	PET with retrospective CT/MRI fusion, PET findings influenced
Schuster et al ¹⁸	¹⁸ F-FACBC	15	Staging/ restaging	_	_	_	_	treatment in 28% of pts PET/CT, sextant analysis, histology, newly diagnosed in 9 pts + suspected recurrence in 6

included few patients. ¹¹C-choline and ¹¹C-methionine may prove to be more effective than ¹⁸F-FDG but this remains to be elucidated further. Table 2 lists current PET tracer studies in bladder cancer, including diagnostic results for select clinical purposes.

RENAL CANCER

In the United States RCC represents approximately 3% of all adult malignancies.² The increasing use of CT and ultrasound to help diagnose various medical conditions has led to the incidental diagnosis of RCC in a higher proportion of patients. At diagnosis RCC is often advanced and unresectable. Approximately a third of patients present with metastatic disease and are usually not curable. Thus, there is a need for more accurate imaging modalities for diagnosis and staging to optimize and develop new and more effective treatment for RCC.

Primary Diagnosis

FDG. ¹⁸F-FDG PET imaging is a challenge in RCC. The major difficulty with diagnosing lesions by ¹⁸F-FDG PET is false-negative imaging due to difficult urinary excretion, leading to the variable detection of primary tumors. Thus, there is general agreement that ¹⁸F-FDG PET has a limited role in the initial diagnosis of renal tumors compared to standard imaging modalities. Ramdave et al reported that the accuracy of ¹⁸F-FDG PET and CT was similar at 94% in patients with known or suspected primary RCC.⁴¹ Compared with CT ¹⁸F-FDG PET detected local recurrence and distant metastases more accurately, and it differentiated recurrence from radiation necrosis. Kang et al found 60% sensitivity and 100% specificity for ¹⁸F-FDG-PET in 17 patients with primary RCC, whereas the sensitivity of abdominal CT was 91.7% and its specificity was 100%.⁴²

FMISO. ¹⁸F-FMISO-PET is a recognized noninvasive method for detecting hypoxia in tumors. Most often RCC is

FIG. 3. Unknown primary tumor and bladder cancer staging in 54-year-old man with tumor on right side of neck. Transaxial ¹⁸F-FDG PET (A), CT (B) and PET/CT fusion images (C) demonstrate tumor on left side of bladder, which was later confirmed by cystoscopy. Axial PET/CT fusion images reveal foci with tracer accumulations in retroperitoneal and mediastinal lymph nodes (D and E). As expected, PET/CT showed tumor on right side of neck but no other pathological tracer uptake in head/neck region (data not shown).

resistant to treatment with radiation and chemotherapy, which may be due to malignant hypoxic areas in the tumor. In a study by Lawrentschuk et al 17 patients were evaluated with ¹⁸F-FMISO-PET before nephrectomy for presumed RCC.⁴³ Of

these patients 11 had histologically confirmed RCC and in these 11 a total of 7 tumors had mildly increased ¹⁸F-FMISO uptake. However, this tendency toward greater uptake in tumor vs that in normal tissue was not statistically significant.

FIG. 4. Bladder cancer staging and ureteral tumor infiltration in 52-year-old woman with newly diagnosed bladder cancer and no right kidney function referred for ¹⁸F-FDG PET/CT for preoperative staging. Coronal PET/CT fusion image reveals pathological accumulation in distal ureter on right side (lower arrow) and large hydronephrosis at same site containing several foci with tracer accumulation (upper arrows).

FIG. 5. Bladder cancer recurrence in 57-year-old woman with history of cystectomy 6 years previously. Ultrasound revealed hydronephrosis on left side and 3 processes in liver. Patient was referred for ¹⁸F-FDG PET/CT for further evaluation. Sagittal PET/CT fusion image demonstrates extensive metastatic disease with multiple foci in bones, liver and abdominal lymph nodes.

TABLE 2. Bladder cancer						
References	PET Tracer	No. Pts	% Sensitivity	% Specificity	Comments	
de Jong et al ³⁸	¹¹ C-choline	23	55.5	_	PET before cystectomy in pts with bladder Ca, bladder Ca in 18 + 5 healthy volunteers	
Drieskens et al ³⁶	¹⁸ F-FDG	55	60	88	PET before cystectomy, correlative imaging of PET with CT, 78% accuracy	
Gofrit et al ³⁹	¹¹ C-choline	18	100	_	PET/CT before cystectomy, 100% sensitivity for tumor + lymph node metastases, visualized carcinoma in situ in 3 pts	
Liu et al ³⁷	¹⁸ F-FDG	46	76.9	97.1	PET, compared to conventional imaging + histology, prior systemic chemotherapy in 10 pts, 50% sensitivity after chemotherapy	
Picchio et al ⁴⁰	¹¹ C-choline	27	96	_	PET, compared to histology, additional CT + bone scan, lymph node sensitivity 62%, accuracy 88.9% for bladder + lymph node	
Imaging was done for	staging, and PPV a	nd NPV were no	t available.			

FLT. ¹⁸F-FLT is a radiolabeled compound based on the nucleic acid thymidine. It has emerged as an important tracer that mirrors cellular proliferation in PET. Early studies in human tumors are promising. Recently Lawrentschuk et al reported a difficult case of RCC in a longstanding cyst, which was clearly delineated using ¹⁸F-FLT.⁴⁴

Staging With FDG

Studies have demonstrated the usefulness of PET for detecting the metastatic spread of RCC compared with other imaging modalities. Ak and Can used ¹⁸F-FDG and dual head coincidence mode PET in 19 patients who had suspected primary renal tumors according to conventional imaging techniques, including CT and ultrasound.⁴⁵ The overall sensitivity, specificity and accuracy of ¹⁸F-FDG coincidence mode PET for RCC were 86% (13 of 15 cases), 75% (3 of 4) and 84% (16 of 19), respectively. For RCC the PPV was 92% and the NPV was 60%. Aide et al compared ¹⁸F-FDG PET to CT to assess efficiency in the primary staging of suspicious renal masses in 53 patients.⁴⁶ When characterizing renal masses, a high rate of false-negative results was observed, leading to 47% vs 97% sensitivity, 80% vs 0% specificity and 51% vs 83% accuracy for ¹⁸F-FDG PET vs CT. ¹⁸F-FDG PET detected all sites of distant metastasis revealed by CT as well as 8 additional metastatic sites, leading to 94% accuracy vs 89% accuracy for CT. Brouwers et al evaluated 20 patients with metastatic RCC using ¹⁸F-FDG PET and radioimmunoscintigraphy with the chimerical monoclonal antibody ¹³¹I-cG250.⁴⁷ Of the 112 tumor lesions that were documented ¹⁸F-FDG PET detected 69%, whereas radioimmunoscintigraphy detected only 30%. When considering 12 bone lesions, Kang et al found 100% specificity for ¹⁸F-FDG PET for differentiating between benign lesions and bone metastases.⁴² This makes ¹⁸F-FDG PET a complementary problem solving tool when conventional scans are suspicious for metastatic RCC but equivocal. Overall ¹⁸F-FDG-PET had 77% sensitivity and 100% specificity for bone metastases compared to 93.8% and 87.2%, respectively, for combined CT and bone scan.

Another study confirmed the superiority of ¹⁸F-FDG PET over bone scan for detecting active osseous metastases.⁴⁸ The diagnostic sensitivity and accuracy of FDG-PET were 100% and 100%, while bone scan sensitivity and accuracy were 77.5% and 59.6%, respectively. Lymph node staging was accurate in 9 patients without metastases and in 2 with metastases. Majhail et al reported overall 63.6% sensitivity, 100% specificity and 100% PPV for FDG PET for detecting distant RCC metastases. 49

Followup With FDG

After Treatment and Recurrence

FDG-PET has been used successfully to monitor RCC progression in the form of local recurrence or metastasis. A study by Safaei et al used whole body ¹⁸F-FDG PET for restaging 36 cases of advanced RCC.⁵⁰ ¹⁸F-PET classified clinical stage correctly in 32 of 36 patients (89%) and it was incorrect in 4 (11%) with 87% sensitivity and 100% specificity. Safaei et al also investigated the accuracy of PET for classifying lesions that were later biopsied. They found that PET correctly classified 21 of 25 biopsied lesions (84%) with 88% sensitivity and 75% specificity.

Ramdave et al similarly observed the superior value of ¹⁸F-FDG PET over CT in the evaluation of patients with suspected recurrent RCC.⁴¹ PET was 100% accurate for demonstrating local tumor recurrence and metastases as opposed to 88% for CT. Jadvar et al reported that the diagnostic performance of PET for detecting recurrent and metastatic RCC revealed 71% sensitivity, 75% specificity, 72% accuracy, 33% NPV and 94% PPV.⁵¹ Dilhuydy et al investigated 24 patients and a total of 26 ¹⁸F-FDG PET scans.⁵² Sensitivity was 75% and PPV was 92.3%. The investigators concluded that, when it is positive, ¹⁸F-FDG PET may modify the decision but, when it is negative, it should not modify decision making especially for surgery due to its sensitivity.

Summary

Because of renal excretion, ¹⁸F-FDG is not useful for primary diagnosis but it has a role in staging and restaging disease when evaluating especially visceral, lymph node and bony disease. ¹⁸F-FMISO and ¹⁸F-FLT may be useful but more clinical data are needed. Table 3 lists recent PET tracer studies in renal cancer, including diagnostic results for select clinical purposes.

CONCLUSIONS

The use of PET and PET/CT in oncology is rapidly expanding with ¹⁸F-FDG the most commonly used radiotracer. PET/CT in uro-oncology is a challenge, mainly because of the

			TABLE 3	3. <i>RCC</i>				
References	PET Tracer	No. Pts	Purpose	% Sensitivity	% Specificity	% PPV	% NPV	Comments
Ramdave et al ⁴¹	¹⁸ F-FDG	25	Diagnosis/staging	88	—	_	_	PET, compared to conventional imaging, accuracy for primary tumor 94% + for metastasis/ local recurrence 100%
Safaei et al ⁵⁰	¹⁸ F-FDG	36	Restaging	87	100	—	—	PET, compared to conventional imaging, including CT, 89% accuracy
Wu et al ⁴⁸	¹⁸ F-FDG (^{99m} Tc bone scan)	18	Staging	100 (77.5)	—	_	_	PET, 52 bone lesions, including 40 metastatic + 12 benign bone lesions, PET 100% + bone scan 59.6% accuracy
Brouwers et al ⁴⁷	¹⁸ F-FDG (¹³¹ I radioimmunoscintigraphy)	20	Restaging	69 (30)		—	—	PET, 112 lesions investigated
Aide et al ⁴⁶	¹⁸ F-FDG	53	Staging	47	80	_	_	PET, for distant renal Ca metastasis PET appeared more efficient than CT (accuracy 94% vs 89%)
Jadvar et al ⁵¹	¹⁸ F-FDG	25	Restaging	71	75	94	33	PET, compared to histology in 2 pts, + clinical followup + conventional imaging for up to 1 yr in 23
Majhail et al ⁴⁹	¹⁸ F-FDG	24	Staging/restaging	63.6	100	100	20	PET before surgery, additional CT, MRI, RCC suspected of metastasis or recurrent disease, accuracy for distant metastasis 66.7%
Kang et al ⁴²	¹⁸ F-FDG	66	Diagnosis/staging	60	100		_	PET, compared to histology or at least 1-yr followup, retrospective study, primary RCC 60% sensitivity, 100% specificity, lymph nodes 75% sensitivity, 100% specificity, bone 77.3% sensitivity, 100% specificity
Ak and Can ⁴⁵	¹⁸ F-FDG	19	Diagnosis	86	75	92	60	To assess role of ¹⁸ F-FDG imaging with dual head coincidence mode gamma camera
Lawrentschuk et al^{43}	¹⁸ F-FMISO	17	Hypoxia		_	_	_	PET, study on the relationship between ¹⁸ F-FMISO + hypoxia in RCC, only mild ¹⁸ F-FMISO uptake in the present RCCs
Dilhuydy et al 52	¹⁸ F-FDG	24	Staging	75	50	92.3	33.3	PET before treatment, additional CT, Follow-up every 3–4 months
Lawrentschuk et al ⁴⁴	¹⁸ F-FLT	1	Diagnosis	—	_	—	—	PET/CT, case report

urinary excretion of many radiotracers and often moderate uptake in some urological tumors. However, ¹⁸F-FDG PET was recently demonstrated to be useful when applied to specific indications in select patients. The rapid development of new metabolic PET tracers with more favorable properties has improved the ability to visualize these urological malignancies and several advances in PET/CT have been made in recent years. However, larger clinical trials are needed to further establish the role of PET/CT in the management of urological malignancy. New radiotracers and further advancement in PET/CT techniques are expected to further improve the performance of PET/CT in uro-oncology. Thus, PET/CT in urological malignancies will continue to expand.

ACKNOWLEDGMENTS

Dr. Jan Bucerius, Department of Nuclear Medicine, University of Bonn, Bonn, Germany provided ¹⁸F-FCH PET images.

Abbreviations and Acronyms

BPH	=	benign prostatic hyperplasia
CT	=	computerized tomography
FACBC	=	fluorocyclobutane-1-carboxylic acid
FCH	=	fluorocholine
FDG	=	fluorodeoxyglucose
FDHT	=	fluoro-5-alpha-dihydrotestosterone
FLT	=	fluorothymidine
FMISO	=	fluoromisonidazole
MR	=	magnetic resonance
MRI	=	magnetic resonance imaging
MRS	=	MR spectroscopy
NPV	=	negative predictive value
\mathbf{PET}	=	positron emission tomography
PPV	=	positive predictive value
PSA	=	prostate specific antigen
RCC	=	renal cell carcinoma
SPECT	=	single photon emission CT
SUV	=	standardized uptake value
TRUS	=	transrectal ultrasound

REFERENCES

- 1. Jana S and Blaufox MD: Nuclear medicine studies of the prostate, testes, and bladder. Semin Nucl Med 2006; **36:** 51.
- Jemal A, Siegel R, Ward E, Murray T, Xu J and Thun MJ: Cancer statistics, 2007. CA Cancer J Clin 2007; 57: 43.
- Liu IJ, Zafar MB, Lai YH, Segall GM and Terris MK: Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 2001; 57: 108.
- Oyama N, Akino H, Suzuki Y, Kanamaru H, Ishida H, Tanase K et al: FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Commun 2001; 22: 963.
- Reske SN, Blumstein NM, Neumaier B, Gottfied HW, Finsterbusch F, Kocot D et al: Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 2006; 47: 1249.
- Scher B, Seitz M, Albinger W, Tilling R, Scherr M, Becker HC et al: Value of (11)C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging 2007; 34: 45.
- Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G et al: Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 2005; 46: 1642.
- Martorana G, Schiavina R, Corti B, Farsad M, Salizzoni E, Brunocilla E et al: 11C-choline positron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. J Urol 2006; 176: 954.
- 9. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W and Mensink HJ: Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol 2002; **42:** 18.
- Yamaguchi T, Lee J, Uemura H, Sasaki T, Takahashi N, Oka T et al: Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 2005; 32: 742.
- Yoshida S, Nakagomi K, Goto S, Futatsubashi M and Torizuka T: 11C-choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol Int 2005; 74: 214.
- Schmid DT, John H, Zweifel R, Cservenyak T, Westera G, Goerres GW et al: Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 2005; 235: 623.
- Kwee SA, Coel MN, Lim J and Ko JP: Prostate cancer localization with 18fluorine fluorocholine positron emission tomography. J Urol 2005; 173: 252.
- Kwee SA, Wei H, Sesterhenn I, Yun D and Coel MN: Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 2006; 47: 262.
- Cimitan M, Bortolus R, Morassut S, Canzonieri V, Garbeglio A, Baresic T et al: [(18)F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 2006; 33: 1387.
- Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y et al: 11C-acetate PET imaging of prostate cancer. J Nucl Med 2002; 43: 181.
- Kato T, Tsukamoto E, Kuge Y, Takei T, Shiga T, Shinohara N et al: Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging 2002; 29: 1492.
- Schuster DM, Votaw JR, Nieh PT, Yu W, Nye JA, Master V et al: Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 2007; 48: 56.

- de Jong IJ, Pruim J, Elsinga PH, Vaalburg W and Mensink HJ: Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 2003; 44: 331.
- 20. Hacker A, Jeschke S, Leeb K, Prammer K, Ziegerhofer J, Sega W et al: Detection of pelvic lymph node metastases in patients with clinically localized prostate cancer: comparison of [18F]fluorocholine positron emission tomographycomputerized tomography and laparoscopic radioisotope guided sentinel lymph node dissection. J Urol 2006; **176**: 2014.
- Fricke E, Machtens S, Hofmann M, van den Hoff J, Bergh S, Brunkhorst T et al: Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging 2003; 30: 607.
- Nunez R, Macapinlac HA, Yeung HW, Akhurst T, Cai S, Osman I et al: Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer J Nucl Med 2002; 43: 46.
- Morris MJ, Akhurst T, Osman I, Nunez R, Macapinlac H, Siedlecki K et al: Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology 2002; 59: 913.
- Kotzerke J, Volkmer BG, Glatting G, van den Hoff J, Gwschwend JE, Messer P et al: Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin 2003; 42: 25.
- Larson SM, Morris M, Gunther I, Beattie B, Humm JL, Akhurst TA et al: Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 2004; 45: 366.
- Dehdashti F, Picus J, Michalski JM, Dence CS, Siegel BA, Katzenellenbogen JA et al: Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging 2005; 32: 344.
- Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H and Leibovitch I: The detection of bone metastases in patients with high risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006; 47: 287.
- Schoder H, Herrmann K, Gonen M, Hricak H, Eberhard S, Scardino P et al: 2-[18F]fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin Cancer Res 2005; 11: 4761.
- 29. Chang CH, Wu HC, Tsai JJ, Shen YY, Changlai SP and Kao A: Detecting metastatic pelvic lymph nodes by 18F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol Int 2003; **70**: 311.
- Oyama N, Miller TR, Dehdashti F, Siegel BA, Fisher KG, Michalski JM et al: 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 2003; 44: 549.
- de Jong IJ, Pruim J, Elsinga PH, Vaalburg W and Mensink HJ: 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 2003; 44: 32.
- 32. Heinisch M, Dirisamer A, Loidl W, Stoiber F, Gruy B, Haim S et al: Positron emission tomography/computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA < 5 ng/ml? Mol Imaging Biol 2006; 8: 43.
- Albrecht S, Buchegger F, Soloviev D, Zaidi H, Vees H, Khan HG et al: (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 2007; 34: 185.

- 34. Wachter S, Tomek S, Kurtaran A, Wachter-Gerstner N, Djavan B, Becherer A et al: 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol 2006; 24: 2513.
- 35. Sandblom G, Sorensen J, Lundin N, Haggman M and Malmstrom PU: Positron emission tomography with C11acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology 2006; 67: 996.
- Drieskens O, Oyen R, Van Poppel H, Vankan Y, Flamen P and Mortelmans L: FDG-PET for preoperative staging of bladder cancer. Eur J Nucl Med Mol Imaging 2005; 32: 1412.
- Liu IJ, Lai YH, Espiritu JI, Segall GM, Srinivas S, Nino-Murcia M et al: Evaluation of fluorodeoxyglucose positron emission tomography imaging in metastatic transitional cell carcinoma with and without prior chemotherapy. Urol Int 2006; 77: 69.
- de Jong IJ, Pruim J, Elsinga PH, Jongen MM, Mensing HJ and Vaalburg W: Visualisation of bladder cancer using (11)Ccholine PET: first clinical experience. Eur J Nucl Med Mol Imaging 2002; 29: 1283.
- Gofrit ON, Mishani E, Orevi M, Klein M, Freedman N, Pode D et al: Contribution of 11C-choline positron emission tomography/computerized tomography to preoperative staging of advanced transitional cell carcinoma. J Urol 2006; 176: 940.
- Picchio M, Treiber U, Beer AJ, Metz S, Bossner P, van Randenborgh H et al: Value of 11C-choline PET and contrastenhanced CT for staging of bladder cancer: correlation with histopathologic findings. J Nucl Med 2006; 47: 938.
- Ramdave S, Thomas GW, Berlangieri SU, Bolton DM, Davis I, Danquy HT et al: Clinical role of F-18 fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J Urol 2001; 166: 825.
- Kang DE, White RL Jr, Zuger JH, Sasser HC and Teigland CM: Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol 2004; 171: 1806.

- 43. Lawrentschuk N, Poon AM, Foo SS, Putra IG, Murone C, Davis ID et al: Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int 2005; 96: 540.
- Lawrentschuk N, Poon AM and Scott AM: Fluorine-18 fluorothymidine: a new positron emission radioisotope for renal tumors. Clin Nucl Med 2006; 31: 788.
- Ak I and Can C: F-18 FDG PET in detecting renal cell carcinoma. Acta Radiol 2005; 46: 895.
- 46. Aide N, Cappele O, Bottet P, Bensadoun H, Reqeasse A, Comoz F et al: Efficiency of [(18)F]FDG PET in characterising renal cancer and detecting distant metastases: a comparison with CT. Eur J Nucl Med Mol Imaging 2003; 30: 1236.
- 47. Brouwers AH, Dorr U, Lang O, Boermann OC, Oyen WJ, Steffens MG et al: 131 I-cG250 monoclonal antibody immunoscintigraphy versus [18 F]FDG-PET imaging in patients with metastatic renal cell carcinoma: a comparative study. Nucl Med Commun 2002; 23: 229.
- 48. Wu H, Yen R, Shen Y, Kao C, Lin C, Lee C et al: Comparing whole body 18F-2-deoxyglucose positron emission tomography and technetium-99m methylene diphosphate bone scan to detect bone metastases in patients with renal cell carcinomas—a preliminary report. J Cancer Res Clin Oncol 2002; 128: 503.
- Majhail NS, Urbain JL, Albani JM, Kanvinde MH, Rice TW, Novick AC et al: F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. J Clin Oncol 2003; 21: 3995.
- Safaei A, Figlin R, Hoh CK, Silvermann DH, Seltzer M, Phelps ME et al: The usefulness of F-18 deoxyglucose whole-body positron emission tomography (PET) for re-staging of renal cell cancer. Clin Nephrol 2002; 57: 56.
- Jadvar H, Kherbache HM, Pinski JK and Conti PS: Diagnostic role of [F-18]-FDG positron emission tomography in restaging renal cell carcinoma. Clin Nephrol 2003; 60: 395.
- Dilhuydy MS, Durieux A, Pariente A, de Clermont H, Pasticier G, Monteil J et al: PET scans for decision-making in metastatic renal cell carcinoma: a single-institution evaluation Oncology 2006; 70: 339.